Треугольник, полученный осевым сечением - равнобедренный (образующие равны). Высота является биссектрисой угла между образующими (120°/2=60°) и делит треугольник на два прямоугольных с углами 30°, 60°, 90°, в которых высота - катет против угла 30°, радиус вращения - катет против угла 60°, образующая - гипотенуза.
Образующая равна
l=6*2=12 см
Радиус вращения равен
r=6√3 см
a) Площадь треугольника по двум сторонам (образующие) и углу между ними:
S=12^2 *sin(30°)/2 =36 (см^2)
б) Площадь боковой поверхности конуса:
S бок= пrl =12*6√3*п =72√3*п (см^2)
-------
Треугольник с углами 30°, 60°, 90°: стороны равны a, a√3, 2a.
хм ну смотри если ка точка пересечения диагоналий( просто в этом не уверенна) то тогда все просто ВД= 4 значит АВ=2.
Ответ:
x = 8√3;
y = 4√3.
Пошаговое объяснение:
<u>Дано</u>:
ΔABC - прямоугольный, CD - высота, AC = x, CD = y, DB = 4, ∠DCB = 30°
<u>Найти</u>: x - ?; y - ?
Рассмотрим ΔDCB - прямоугольный: ∠D - прямой, ∠C = 30°, DB = 4, y - ?
CB = 4 * 2 = 8 (катет, лежащий напротив ∠30° равен половине гипотенузы)
По теореме Пифагора:
y² = СВ² - DB²
y² = 8² - 4²
y² = 64 - 16
y² = 48
y = √48 = √(16 * 3) = 4√3
Рассмотрим ΔACD и ΔACB - прямоугольные: ∠ACB и ∠ADC - прямые
∠ACD = ∠ACB - ∠DCB
∠ACD = 90 - 30 = 60°
∠CAD = 90 - 60 = 30° (сумма острых углов в прямоугольнике равна 90°)
x = y * 2 (катет, лежащий напротив ∠30° равен половине гипотенузы)
x = √48 * 2 = 2√48 = 2 * √(16 * 3) = 8√3
Средняя линия треугольника равна половине параллельной ей стороны.
Поэтому стороны треугольника равны: 6см, 10см и 14см.
Периметр треугольника: Р = 6см + 10см + 14см = 30см
Ответ: 30см
Открой фотографию , надеюсь поймешь ))