a1*a3=4
a3*a5=64
an=a1*b^(n-1)
a3=a1*b^2 тогда a1*a1*b^2=4
a5=a1*b^4 тогда a3*a5= a1*b^2*a1*b^4=64
получаем систему уравнений с двумя неизвестными a1 и b
a1^2*b^2=4
a1^2*b^6=64
выразим a1 из второго уравнения и подставим в первое
a1^2=64/b^6
64/b^6*b^2=4
64/b^4=4
b^4=16
b=2
тогда a1^2*4=4 значит a1=1
a2=1*2=2
a4=8
a6=32
a2+a4+a6=42
q=-10 так как q=An/An-1 -20/2=-10
1.6^3=216
2. 2^(3x-5)=2^4
3x-5=4
3x=9
x=3
3. 3^(x^2-5x+2)=3^(-4)
x^2-5x+6=0
x1=2; x2=3