<span>(х-2у)-0,5(2х+3у)-4,5х
</span><span>х-2у-х-1,5у-4,5х
</span>-3,5у-4,5х
При условии
х + у/(19z) + 9x - y/19z=10x; y/19z - y/19z=0 (противоположные числа).
При условии
(х+у)/19z + (9x-y)/19z=(x+y+9x-y)/19z=10x/19z.
Ставьте скобки, пожалуйста))
Пусть n и n+1 - последовательные натуральные числа,
тогда n²+(n+1)² - сумма квадратов этих чисел, а n(n+1) - их произведение.
По условию задачи можно составить уравнение:
n²+(n+1)²-n(n+1)=157
n²+n²+2n+1-157=0
n²+n-156=0
D=1-4*1*(-156)=1+624=625=25²²
n(1)=(-1+25)/2=12 - натуральное число
n(2)=(-1-25)/2=-13 - не является натуральным числом
Итак, n=12. Следовательно, n+1=12+1=13.
Ответ: 12 и 13
В дроби мы можем домножить числитель и знаменатель (над и под чертой) на одно и то же число без изменения значения дроби.
Таким образом,
1) <u>3</u> / <u>2√6</u> = <u>(3 * √6)</u> / <u>(2 * √6 * √6)</u> = <u>(3 * √6)</u> / <u>(2 * 6)</u> = <u>3√6</u> / <u>12</u>
2) В выражении √14 - 2 можно избавиться от радикала с помощью разности квадратов (√14)² - 2² = (√14 - 2)(√14 + 2). Не хватает только (√14 + 2), на которую и домножаем:<u> (10 * (√14 + 2))</u> / <u>((√14)² - 2²)</u> = <u>10 * (√14 + 2)</u> / <u>(14 - 4)</u> =<u>10 * (√14 + 2)</u> / <u>10</u>= √14 + 2