Функция линейная, имеет разрыв в точке x-1=0 ⇒ x=1, y=1+6=7.
Ответ: y∈(-∞; 7)U(7; +∞)
Функция убывает, если выполняется такая закономерность: Большему значению аргумента соответствует меньшее значение функции.То есть при х₁>х₂ выполняется неравенство у(х₁)<у(х₂).
Пусть х₁>х₂>2, тогда 4/х₁<4/х₂ (из двух дробей с одинаковыми числителями меньше та, у которой знаменатель больше). Теперь от обеих частей неравенства отнимем 2, получим
4/х₁-2<4/х₂-2 . То есть у(х₁)<у(х₂), что и требовалось доказать.
{xy+x+y=11; {xy+x+y=11;
{x²y+xy²=30. ⇒ {xy(x+y)=30.
Пусть х+у=u; xy=v
{v+u=11;
{vu=30.
Решаем систему способом подстановки:
{v=11-u;
{(11-u)u=30.
Решаем второе уравнение системы
u²-11u+30=0
D=(-11)²-4·30=121-120=1
u₁=(11-1)/2=5 или u₂=(11+1)/2=6
v₁=11-u₁=11-5=6 или v₂=11-6=5
Обратная замена
{x+y=5 или {x+y=6
{xy=6 {xy=5
{y=5-x {y=6-x
<span>{x(5-x)=6 {x(6-x)=5</span>
Решаем вторые уравнения систем:
x²-5x+6=0 x²-6x+5=0
D=25-24=1 D=36-20=16
x₁=(5-1)/2=2; x₂=(<span>5+1)/2=</span>3 x₃=(6-4)/2=1; x₄=(6+4)/2=5
y₁=5-2=3; y₂=5-3=2 y₃=6-1=5; y₄=6-5=1
О т в е т. (2;3) (3;2) (1;5) (5;1).