Если речь идет о остроугольном или прямоугольном треугольнике....
используя основное тригонометрическое свойство найду cosB
sin^2<B+cos^2<B=1
cos^2<B=1-sin^2<B=1-(4/5)^2=1-16/25=9/25
cos<B=3/5
тогда
tg<B=sin<B/cos<B=4/5:3/5=4/3
ctg<B=cos<B/sin<B=3/5:4/5=3/4
Если треугольник тупоугольный, то в значениях искомых функций появится знак минус
сos<B=-3/5; tg<B=4/5:(-3/4)=-4/3; ctg<B=-3/4
1) Треугольник называется равнобедренным, если у него две стороны равны.
Найдем чему равны стороны треугольника, используя формула для вычисления расстояния между точками:
АВ^2=(-1-(-5))^2+(-1-(-4))^2=(-1+5)^2+(-1+4)^2=
=16+9=25. Откуда АВ=√25=5
ВС^2=(-4-(-1))^2+(3-(-1))^2=(-4+1)^2+(3+1)^2=
=9+16=25. Откуда, ВС=√25=5
АС^2=(-4-(-5))^2+(3-(-4))^2=(-4+5)^2+(3+4)^2=
=1+49=50. Откуда, АС=√50=5√2.
Получили, что АВ=ВС=5, значит треугольник АВС - равнобедренный.
Что и требовалось доказать.
2) Уравнение окружности с центром в точке (х0, у0) радиуса R имеет вид:
(х-х0)^2+(у-у0)^2=R^2.
По условию задачи точка В(-1,-1) является центром окружности, значит х0=у0=-1.
Т.к. окружность проходит через точку С, то точка С принадлежит этой окружности. Расстояние от центра окружности до любой точки окружности - есть радиус окружности. Т.е. расстояние ВС между точками В и С является радиусом R искомой окружности.
ВС=5 (см. пункт 1), а значит и R=5.
Таким образом, уравнение
(х-(-1))^2+(у-(-1))^2=5^2 или
(х+1)^2+(у+1)^2=25 - искомое уравнение окружности.
Прник авсд
ав=сд.
ад=вс
у меня ответы
ав=13.5
ад=14.5
Площадь=197,75
Сумма всех углов 180 а 76+38=114, 180-114=66гр