Все боковые грани - равносторонние треугольники. Поэтому, если провести плоскость через точка А, С и К - середину SB, то в грани SАB АК - перпендикляр на SB, точно так же и СК будет перпендикулярно SB, поэтому плоскость АСК, где К - середина SB, перпендикулярна SB, и угол АКС и есть нужный линейный угол двугранного угла между плоскостями SAB и SBC.
Поэтому угол АКС, который надо найти, равен углу при вершине в равнобедренном треугольнике АКС, АК = КС = <span>√3/2 (высоты в правильных треугольниках со стороной 1), АС = <span>√2/2 (диагональ квадрата со стороной 1).</span></span>
<span><span>(можно "забыть" о двойках в знаменателе, то есть попросту удвоить стороны, угол от этого не изменится, то есть у треугольника стороны √3 √3 и √2, надо найти угол напротив стороны √2)</span></span>
Если обозначить Ф - угол АКС, cos(Ф) = х, то по теореме косинусов
2 = 3 +3 - 2*3*x;
6*x = 4; x = 2/3;
Ф = arccos(2/3)
<span>по теореме пифагора cв квадрате=a в квадрате + b в квадрате= 36 + 64 = 100 </span>
<span>100 в квадратном корне = 10 </span>
<span>радиус= 5</span>
Из центра О окружноси проведем радиус ОК в точку касания К. По т. "Радиус проведенный в точку касания - перпендикулярен касотельной", следовательно имеем 3 перпендикуляра к одной прямой, а по теореме они параллельны между собой. Cледовательно АА1В1В - трапеция, а так как О-середина АВ, то ОК- средняя линия этой трапеции и значит точка К - серединаА1В1