2x²+px-p=0 не имеет корней D<0
p²+8p=p(p+8)<0
------------------ -8------------------0----------------
+ - +
p∈(-8;0)
√(3x² - 2x + 15) + √(3x² - 2x + 8) = 7
ОДЗ не нужно, т.к. оба выражения под знаком радикала принимают только положительные значения:
3x² - 2x + 15 = 0
D = 4 - 14·4·3 < 0 ⇒ корней нет ⇒ выражение под первым корнем больше нуля при всех x;
3x² - 2x + 8 = 0
D = 4 - 15·4·3 < 0 ⇒ корней нет ⇒ выражение под вторым корнем больше нуля при всех x;
Пусть t = 3x² - 2x + 8, t ≥ 0
√(t + 7) + √t = 7
√(t + 7) = 7 - √t 7 - √t ≥ 0
t + 7 = 49 - 14√t + t
7 - 49 = -14√t
-42 = -14√t
√t = 3
t = 9
Обратная замена:
3x² - 2x + 8 = 9
3x² - 2x - 1 = 0
D = 4 + 3·4 = 12 + 4 = 16 = 4²
x₁ = (2 + 4)/6 = 1
x₂ = (2 - 4)/6 = -2/6 = -1/3
Ответ: x = -1/3; 1.
Y=log₂(2x²-1). x>1 доказать, что функция возрастает на интервале (1;∞)
x₁=2. y₁=log₂(2*2²-1), y₁=log₂7
x₂=3. y₂=log₂(2*3²-1), y₂=log₂17
log₂17>log₂7, => функция y=log₂(2x²-1) возрастает при x>1(бОльшему значению аргумента соответствует бОльшее значение функции)
4+2x= -2-x; 2x+x= -2-4; 3x= -6; x=(-6)/3= -2. Ответ: x= -2.