Решение задания смотри на фотографии
Сумма n членов посл-ти в числителе:
Sn=[(n+1)^2]*[n/2]-2n-4n+4-6n+12-8n+24+...-n^2+const+...-4n+4-2n= (1)
=(n^3)/2+n^2+n/2-2n(1+2+3+4+...+n/2)+A(n^2) (2)
<<<Пояснение: представили сумму посл-ти числ-ля как n/2 квадратов сумм пар крайних членов т.е. [(n+1)^2+(n-1+2)^2+(n-2+3)^2+...+([n-n/2]+n/2)^2] и прибавили разницу т.е. напр. для номера 3: (3^2+(n-2)^2)-(3+n-2)^2=-6n+12; для номера 2: -4n+4 и т.д.
<span>Таким образом получили (1) </span>
Далее (2): А(n^2)-величина порядка не более n^2, получаемая при сложении всех свободных членов из (1)>>>
(n^3)/2+n^2+n/2-2n(1+2+3+4+...+n/2)+A(n^2)=(n^3)/2+n^2+n/2-2n([n/2+1]/2*(n/2))+A(n^2)=(n^3)/4+A(n^2)+A(n)+const
<span>Отсюда искомый предел: lim[(n^3)/4+A(n^2)+A(n)+const]/[n^3+3n^2+2] при n->& равен 1/4</span>
Число кратно 10, если оно оканчивается хотя бы одним нулем. В числе 26 последняя цифра 6, 6 в любой степени есть число, заканчивающееся на 6, в числе 15 последняя цифра 5, 5 в любой степени есть число, заканчивающееся на 5, аналогично 11: 1 в любой степени 1. Т.о., выражение указанное в условии, будет в последних цифрах выглядеть как 6+5-1=10. Т.е. полный результат всех выполненных действий будет оканчиваться на 0, а значит кратен 10.
Через одну точку можно провести только одну прямую.Через 4 точки можно провести только 4 прямых.