Решение уравнения при х=9, тогда √9=3=6-9/3. График во вложении.
На сторонах CAD отмечены точки В и Е так, что точка В лежит на отрезке АС, а точка Е - на отрезке АD, причем АС=АD и АВ=АЕ. Докажите, что угол СВD=углу DЕС.Дано: CAD-треуг.В прин АСЕ прин АД АС=АD АВ=АЕ_____<span>До., что угол СВD=
углу DЕС. </span> Решение:треуг САД-равнобедр,т.к. АС=АД. и если АВ=АЕ,то ВС=ЕД.соединим С и Е,В и D.<span>рассмотрим треуг. BDC и CED,в них: CD-общая,ВС=ЕД,угол ВСД= углу ЕДС (как углы при основании равнобедр треуг),следоват треуг. BDC=CED (по двум сторонам и углу между ними) , в равных треугольниках все соответствующие элементы равны,следов. угол СВD=
углу DЕС.</span><span>
</span>
////////////////////////////////////////////////////////////////////////////////////
1) -0.375*(-32)=12
2) 0.5*(-8)=-4
3)12+(-4)=8