Так это ведь практическая, как ее здесь сделать?
A b
--------------------->
C d
--------------------->
Обозначим треугольник АВС(смотри рисунок). Прооведём прямые МК и МL. А ткже высоты в иреугольниках MBL и MKB соответственно h1 и h2. Очевидно, что ВО:ОМ будет равно отношению площадей треугольников BOL и MOL. Поскольку высота h1 у них общая. Вот и будем искать эти площади выражая их через площадь треугольника АВС. Поскольку АМ:МС=1:3, то так же относятся и площади треугольников АВМ и МВС. Аналогично находим площадь треугольника МВL из треугольника МВС и площадь МКВ из АВМ. У треугольников МВL и МКВ общее основание ВМ поэтому их площади относятся как их высоты h1:h2. А площади ВОL и ВОК относятся как их высоты h1:h2, потому, что у них общее основание ОВ. Дальше находим площади ВОL и MOL. Ответ ВО:ОМ=1.
Оно применяется тогда, когда векторы неколлинеарные. То есть не лежат на одной прямой или на параллельных. В этом случае от некоторой произвольной точки нужно отложить первый вектор. Из его конца требуется провести параллельный и равный второму. Результатом станет вектор, исходящий из начала первого и завершающийся в конце второго. Рисунок напоминает треугольник. Отсюда и название правила.- Читайте подробнее на SYL.ru: <span>http://www.syl.ru/article/191003/mod_pravila-po-kotoryim-proishodit-slojenie-vektorov</span>