V( пирамиды SABC)=(1/3)·S(ΔABC)·H
По условию (1/3)·S(ΔABC)·H=210, значит S(ΔABC)·H=630.
Пусть сечение - треугольник А₁В₁С₁.
Из подобия
Так как SA₁:SA=3:7 , то h:H=3:7, где h- высота пирамиды SA₁B₁C₁
и
А₁В₁:АВ=3:7
В₁С₁:ВС=3:7
А₁С₁:АС=3:7
а площади подобных треугольников относятся как квадраты соответствующих сторон.
S( Δ А₁В₁С₁):S( Δ АВС)=9:49
Так как
S(Δ А₁В₁С₁)=90, то S(Δ АВС)=90·49:9=490
Из равенства S(ΔABC)·H=630 находим
Н=630:490
Н=9/7
h:H=3:7
h=27/49
О т в е т. 27/49.
Сумма односторонних углов трапеции всегда 180°.
Обозначим один из углов за х:
(180 - х) - х = 40;
180 - 2х = 40;
2х = 180 - 40;
2х = 140;
х = 70°.
180° - 70° = 110°
Ответ: 70° и 110°.
Имеем прямоугольник ABCD. Диагонали AC и BD, которые пересекаются в точке O. Угол ABO=36градусов.Найти угол AOD.
Т.к. диагонали прямоугольника равны и точкой пересечения делятся пополам, то треугольник ABO - равнобедренный. Значит, ABO=BAO=36.ABO+BAO+AOB=180 градусов. угол AOB= 180-( ABO+BAO). угол AOB=180 - (36+36)=108.
Т.к. AOB+AOD=180(эти углы смежные), то AOD=180-108=72 градуса. .
!!!!!!!!!!!!!!????!!!!!!!!!!