<span><span><span>−3</span>,<span><span><span>5<span>x2</span></span>+<span>6x</span></span>−0</span></span>,<span>5=0</span></span>
<span>Коэффициенты уравнения: </span>
<span><span>a=<span>−3</span></span>,5</span><span>, </span><span>b=6</span><span>, </span><span><span>c=<span>−0</span></span>,5</span>
<span>Вычислим дискриминант: </span>
<span><span>D=<span><span>b2</span>−<span><span>4a</span>c</span></span></span>=</span><span><span><span><span>62</span>−<span><span>4·<span>(<span><span>−3</span>,5</span>)</span></span>·<span>(<span><span>−0</span>,5</span>)</span></span></span>=<span>36−7</span></span>=29</span>
<span>(<span>D>0</span>)</span>, следовательно это квадратное уравнение имеет 2 различных вещественных корня:
Вычислим корни:
<span><span>x<span>(<span>1,2</span>)</span></span>=<span><span><span>−b</span>±<span>√D</span></span><span>2a
</span></span></span><span><span><span><span><span><span>x1</span>=<span><span><span>−b</span>+<span>√D</span></span><span>2a</span></span></span>=<span><span><span><span>−6</span>+5</span>,385</span><span>2·<span>(<span><span>−3</span>,5</span>)</span></span></span></span>=<span><span><span>−0</span>,615</span><span>−7</span></span></span>=0</span>,088
</span><span><span><span><span><span><span>x2</span>=<span><span><span>−b</span>−<span>√D</span></span><span>2a</span></span></span>=<span><span><span><span>−6</span>−5</span>,385</span><span>2·<span>(<span><span>−3</span>,5</span>)</span></span></span></span>=<span><span><span>−11</span>,385</span><span>−7</span></span></span>=1</span>,626</span>
<span><span><span>−3</span>,<span><span><span>5<span>x2</span></span>+<span>6x</span></span>−0</span></span>,<span><span>5=<span>0.5·<span><span>(<span><span>x−0</span>,088</span>)</span><span>(<span><span>x−1</span>,626</span>)</span></span></span></span>=0
</span></span>Ответ:
<span><span><span>x1</span>=0</span>,088</span>
<span><span><span>x2</span>=1</span>,<span>626</span></span>
(x+2)(x+3)(x+8)(x+12)≤4x²
(x²+3x+2x+6)(x²+12x+8x+96)≤4x²
(x²+5x+6)(x²+20x+96)≤4x²
x⁴+20x³+96x²+5x³+100x²+480x+6x²+120x+576≤4x²
(x⁴)+(20x³+5x³)+(96x²+100x²+6x²-4x²)+(480x+120x)+576≤0
x⁴+25x³+198x²+600x+576≤0
x=-4
x⁴+25x³+198x²+600x+576|x+4
x⁴+4x³ x³+21x²+114x+144
21x³+198x²+600x+576
21x³+84x²
114x²+600x+576
114x²+456x
144x+576
144x+576
0
(x+4)(x³+21x²+114x+144)≤0
x³+21x²+114x+144=0
x=-6
x³+21x²+114x+144|x+6
x³+6x² x²+15x+24
15x²+114x+144
15x²+90x
24x+144
24x+144
0
(x+4)(x+6)(x²+15x+24)≤0
x²+15x+24=0
D=15²-4*24=225-96=129
x₁=(-15+√129)/2
x₂=(-15-√129)/2
(x+4)(x+6)(x-((-15+√129)/2))(x-((-15-√129)/2))≤0
√121<√129<√144 ⇒ 11<√129<12 ⇒ √129≈11,3
(-15+11,3)/2=-1,85
(-15-11,3)/2=-13,15
//////////////// ////////////////
+ - + - +
________.________.________.________.________
(15-√129)/2 -6 -4 (-15+√129)/2
x∈[(15-√129)/2;-6]U[-4;(-15+√129)/2]
1) так как 7>1, то
2x-9>3x-6
-x>3
ответ x<-3
2) 4^(5x-1)>4^(6x+24)
5x-1>6x+24
-x>25
ответ x<-25