Все уравнения решаются методом замены.
1) Пусть сosx=a, тогда
3*a^2-10*a+7=0 a1,2=(10±√(10^2-4*3*7))/2*3=(10±4)/6
a1=(10-4)/6=1 , то есть cosx=1 x=2*П*n, nЄZ
a2=(10+4)/6=7/3 так как -1=<cosx=<1 7/3>1 значение не подходит.
2) Преобразуем уравнение
6*cos^2 x+7*sinx-1=0 6*cos^2 x=6-6*sin^2x заменяем
6-6*sin^2 x+7*sinx-1=0 -6*sin^2 x+7*sinx+5=0
Пусть sinx=a -6*a^2+7*a+5=0 a1,2=(-7±√(7^2-4*(-6)*5))/2*(-6)=
=(-7±13)/-12
a1=(-7-13)/(-12)=20/12=5/3 не подходит
а2=(-7+13)/(-12)=6/(-12)=-1/2 sinx=-1/2 x=(-1)^n*7*П/6+П*n, nЄZ
3) 3*сos^2 x+5*sinx+5=0 3*cos^2 x=3-3*sin^2 x
3-3*sin^2 x+5*sinx+5=0 (*(-1)) 3*sin^2 x-5*sinx-8=0
Пусть sinx=a
3*a^2-5*a-8=0 a1,2=(5±√(5^2+4*3*8))/2*3=(5±11)/6
a1=(5-11)/6=-1 sinx=-1 x=-П/2+2*П*k, kЄZ
a2=(5+11)/6=16/6=8/3>1 не подходит
4) Пусть cosx=a 12*a^2-20*a+7=0 a1,2=(20±√(20^2-4*12*7))/2*12=
=(20±8)/24
a1=(20-8)/24=12/24=1/2 cosx=1/2 x=П/3+2*П*k, kЄZ
a2=(20+8)/23=28/24>1 не подходит
5) 5*сos^ x-12*sinx-12=0 5cos^2 x=5-5*sin^2 x
5-5*sin^2x-12*sinx-12=0 (*(-1) 5*sin^2 x+12*sinx+7=0
Пусть sinx=a 5*a^2+12*a+7=0 a1,2=(-12±√(12^2-4*5*7))/2*5=(-12±2)/10
a1=(12-2)/10=1 sinx=1 x=П/2+2*П*k, kЄZ
a2=(12+2)/10=14/10>1 не подходит
45+x=330 (330 это в 1 часу 60 мин 60*5+30)
______________
- 3d = - 27
d = 9
a₁ = - 7 - 2d = - 7 - 2 * 9 = - 7 - 18 = - 25
(a+b)(a+2)-(a-b)(a-2)-2ab=a^2+2a+ab+2b-(a^2-2a-ab+2b)-2ab=a^2+2a+ab+2b-a^2+2a+ab-2b-2ab=4a