<span>{112=b1*(1+q+q^2)
{14=b1*q^3*(1+q+q^2)
q=(7/56)^(1/3) b1=112/(1+(7/56)^(1/3)+(7/56)^(2/3))
S(5)=S(6)-b1*q1^5
s(5)=126-112*(7/56)^(1/3)/(1+(7/56)^(1/3)+(7/56)^(2/3))</span>
Grjjggbhggggfddtgfddfffggvgggggggggfffffffdddffgggggggggggggggggffffgrghygggfgggg
{xy=2 ;y -x² =1 ⇔{ x(x²+1) =2 ; y =x² +1.
x(x²+1) =2
x³+x -2 =0 ;
x³-x+2x -2 =0 ;
x(x²-1) +2(x-1) =0 ;
x(x-1)(x+1) +2(x-1) =0 ;
(x-1)(x² +x+2) = 0 ⇔[ x-1=0 ; x² +x+2 =0 .
x-1 =0⇒ x=1⇒y =x² +1 =1²+1=2.
x² +x+2 =0 не имеет действительных корней (D =1² -4*2 = -7 <0 ).
ответ : x=1, y =2.
(a-3b)/(a2-3ab) = (a-3b)/(a(a-3b)) = 1/a.