Y = (2x² - 32x +32)e⁷⁻ˣ
точка максимума - это значение х, при переходе через которую производная меняет свой знак с "+" на "-"
Значит, будем искать производную ( формула : (UV)' = U'V + UV')
y' = (4x -32)e⁷⁻ˣ - (2x² - 32x +32)*e⁷⁻ˣ = e⁷⁻ˣ ( 4x -32 -2x² +32x -32)=
= e⁷⁻ˣ ( 36x -2x² -64)
ищем критические точки:
e⁷⁻ˣ ( 36x -2x² -64) = 0
e⁷⁻ˣ ≠ 0, значит, 36x -2x² - 64 = 0
х² -18х + 32 = 0
по т. Виета корни 2 и 16
теперь проверим эти корни ( критические точки) на min и max/
-∞ 2 16 +∞
- + - это знаки 36x -2x² - 64
х max = 16
Пусть у ПЕти х денег. Тогда у Коли 2х. Если бы Коле дали 1 гр, то стало бы 2х+1, а у Пете стало бы х+0,1. Зная, что у Коли в 3 раза больше составим уравнение: 3(х+0,1)=2х+1 Решим уравнение получим х=0,7 было у Пети, тогда у Коли 1,4.