Объяснение:
1) y=-3x²+x³+1
y'=-6x+3x²=0
3x(-2+x)=0
3x=0
x=0
-2+x=0
x=2
а) возрастает
убывает
б)
f(0)=max
f(2)=min
в)
f(-2)=-19(наименьшее)
f(-1)=-3
f(0)=1(наибольшее)
f(1)=-1
f(2)=-3
2)
• y=4x²-3x³+5x-7
y'=8x-9x²+5
•
y'=
•
y'=
3)
x0=1
f(x0)=f(1)=2
f'(x)=
f'(1)=1
уравнение касательной: y= f(x0)+ f'(x0)(x-x0)
y=2+1(x-1)=2+x-1=1+x
Графики пересекаются в точке (1,5;-2)
х=1,5
A²+10ab+25b²=a²+2*a*5b+(5b)²=(a+5b)²=(a+5b)(a+5b)
График данной функции представлен на рисунке