так как BC=AC=5, CF=5-2=3
КОСИНУСОМ НАЗЫВАЕТСЯЯ ОТНОШЕНИЕ ПРИЛЕЖАЩЕГО КАТЕТА К ГИПОТЕНУЗЕ
КОСИНУС ACF= 3:5=0,6
1)По теореме Пифагора найдем гипотенузу АС^2=36+64=100
АС=10
2)у прямоугольного треугольника 2 острых угла,пусть угол В=90,найдем sin,cоs,tg углов А и С. sin-это отношение противолежащего катета к гипотенузе,т.е sin A=вс/ас
sin A=6/10=3/5
sin С=АВ/Ас
sin C=8/10=4/5
3)cos-отношение прилежащего катета к гипотенузе,т.е cos A=aв/ас
cos A=8/10=4/5
cos С=Bc/Ас
cos C=6/10=3/5
4)tg-отношение синуса к косинусу,т.е tg A=sinA/cos A
tgA=3/5 / 4/5=3/4
tg C=sinC/cosC
tgC=4/5 / 3/5 =4/3
<span>Нарисуем равнобедренную трапецию.</span> Обозначим ее вершины АВСD.
Опустим из вершины В высоту Вh на основание АD.
Получился <span>равнобедренный прямоугольный треугольник ВhD</span>, так как диагональ ВD образует с основанием угол 45 градусов. .
<span>Катеты этого треугольника равны 8</span>, так как гипотенуза в нем 8√2.
<span>Продлим основание ВС.</span>
Из вершины D основания АD возведем перпендикуляр DН до пересечения с продленной ВС.
<span>Рассмотрим прямоугольник ВhDН</span>
В нем СН равен отрезку Аh на основании трапеции, так как АВ=СD и Вh=НD.
Высота в нем равна основанию.
Отсюда <span>площадь этого квадрата ВhDН равна площади трапеции АВСD.</span>
<span>Площадь</span> квадрата <span> ВhDН =</span>
S= Вh* hD=8²=64
S трапеции=64 ед²
● Решение приложено ●
___________________________
В конце первой задачи при нахождении МН можно найти корень из 4 )
___________________________
1) DE не пересекается с АС, ВС пересекает эти 2 прямые ⇒ по определению параллельных прямых DE II AC
чтд
2) а) 1.
3.1*BA=9.3*BD
BA=3*BD ⇒
2.
4.2*BC=12.6*BE
BC=3*BE
⇒
из этого следует, что и
б) из прошлого решения мы выяснили, что треугольники подобны, значит
в) из первого решения мы выяснили, что треугольники подобны, значит
2) 1. т.к. OK перпендикулярна АВ, то ОВ - высота, значит треугольники КВО и АКО - прямоугольные, уголВКО = углуАКО = 90
2. найдем КО = √8*2 = √16 = 4
3. найдем ВО по т. Пифагора = √8^+4^2 = √64+16 = √80 = 4√5
ВD = 2ВО = 2*4√5 = 8√5
4. аналогично найдем АО = √2^2+4^2 = √4+16 = √20 = 2√5
АС = 2АО = 2*2√5 = 4√5
ответ: 8√5, 4√5