Это нужно разложить на множители будет
Решение первого во вложении:
А дальше находим корни этого уравнения, принадлежащие указанному отрезку:
Косинус равен единице только в точках х = 0 и х = 2П (из указанного промежутка).
На указанном отрезке [0; 2П] синус принимает наименьшее значение в точке "3 пи пополам", равное (- 1), а наибольшее - в точке "пи пополам", равное (+ 1).
Косинус на этом отрезке монотонно убывает от ) до П, (наименьшее значение, принимаемое косинусом на данном промежутке, равно - 1) и монотонно возрастает от П до 2П, где вновь принимает максимальное значение, равное +1.
Вычисляйте значения в концах отрезка:
х = 0 у = 0 - 0 = 0 - наименьшее значение.
х = 2П у = 2П - 0 = 2П - наибольшее значение
1)
Ответ: 2.
2) 1)
2) НОЗ=12
Ответ: наименьший корень .
F(x0)=0,5*-3^2-1=3,5;f'(x)=0,5*2x=x;f'(x0)=-3;y=3,5-3*(x+3)=3x+9