Функция убывает, если выполняется такая закономерность: Большему значению аргумента соответствует меньшее значение функции.То есть при х₁>х₂ выполняется неравенство у(х₁)<у(х₂).
Пусть х₁>х₂>2, тогда 4/х₁<4/х₂ (из двух дробей с одинаковыми числителями меньше та, у которой знаменатель больше). Теперь от обеих частей неравенства отнимем 2, получим
4/х₁-2<4/х₂-2 . То есть у(х₁)<у(х₂), что и требовалось доказать.
y=(x+4)^2(x+10)+9
y(-8)=(-8+4)^2(-8+10)+9=41
y(1)=(1+4)^2(1+10)+9=284
y max=284
y min=41
=====================================