В общем-то, предупреждаю сразу: комбинаторику я плохо знаю. Это не говорит о том, что решение неправильное, просто есть вероятность, что его можно было записать проще и короче
1. Так как в колоде всего 9 различных видов карт, имеющихся по 4 экземпляра (масти), то вероятность нахождения 2 одинаковых карт (и дам, и тузов) будет одной и той же. А теперь пояснение к тому, как я составлял формулу: я отнял от всех возможных сочетаний из 36 по 5 все возможные сочетания без нужной карты, с одной из нужных карт, с тремя из нужных карт, с четырьмя из нужных карт и разделил всё это на все возможные сочетания из 36 по 5.
<span>
</span>Вычисления приводить не буду, так как это ОЧЕНЬ долго писать. Получается <span>
2. Ход рассуждений точно такой же, но теперь количество карт, которые могут находиться в паре, не 4, а 9, так как требуются карты не одного вида, а одной масти.
</span>
Произведение равно нулю, когда хотя бы один из множителей равно 0
Решаем как квадратное уравнение относительно sin x
Это уравнение действительных корня не имеет.
Отбор корней на отрезке [7π/2; 7π]
k = 4; x = π/6 + 4π = 25π/6
k = 5; x = -π/6 + 5π = 29π/6
k = 6; x = π/6 + 6π = 37π/6
k = 7; x = -π/6 + 7π = 41π/6
M²+2xy-x²-y² = x²-2xy+y²-m² = (x-y)² - m² = (x-y-m)(x-y+m)
1) Розкриємо дужки : x^2-12x < x^2+12x
2)x^2+2x> 2x-3