через дискриминат решаем,
1) sinx = -1/2;
x = (-1)^(n+1)* arcsin(|-1/2|) + pi*n;
x = (-1)^(n+1)* pi/6) + pi*n; n ∈ Z
n = 0; x = -pi/6 ∉[0;3p]
n = 1; x = pi/6 + pi = 7pi/6 ∈<span>[0;3p]
</span>n = 2; x = -pi/6 + 2pi = 11pi/6 ∈<span>[0;3p]
</span>n = 3; x = pi/6 + 3pi ∉<span>[0;3p]
</span>Ответ: x = 7pi/6 ∪ x = 11pi/6
2) sinx = 1/2;
x = (-1)^(n)* arcsin1/2) + pi*n;
x = (-1)^(n)* pi/6)+ pi*n; n ∈ Z
n = -1; x = -pi/6 - pi ∉ [-p/2;3p/2]
n = 0; x = pi/6 ∈[-p/2;3p/2]
n = 1; x = -pi/6 + pi = 5pi/6 ∈[-p/2;3p/2]
n = 2; x = pi/6 + 2pi ∉[-p/2;3p/2]
Ответ: x = pi/6 ∪ x = 5pi/6
3) sinx = -√2/2;
x = (-1)^(n+1)* arcsin(|-√2/2|) + pi*n;
x = (-1)^(n+1)* pi/4) + pi*n; n ∈ Z
n = -4; x = -pi/4 - 4pi ∉[-3p;0]
n = -3; x = pi/4 - 3pi = -11pi/4 ∈[-3p;0]
n = -2; x = -pi/4 -2pi = -9pi/4 ∈[-3p;0]
n = -1; x = pi/4 - pi = - 3pi/4 ∈[-3p;0]
n = 0; x = -pi/4 ∈[-3p;0]
n = 1; x = pi/4 + pi ∉[-3p;0]
Ответ: x = -11pi/4 ∪ x = -9pi/4 ∪ x = pi/4 - pi ∪ x = -pi/4
4) sinx = √2/2;
x = (-1)^(n)* arcsin(√2/2) + pi*n;
x = (-1)^(n)* pi/4)+ pi*n; n ∈ Z
n = -2; x = pi/4 - 2pi = -7pi/4 ∉[-3p/2;5p/2]
n = -1; x = -pi/4 - pi = - 5pi/4 ∈[-3p/2;5p/2]
n = 0; x = pi/4 ∈[-3p/2;5p/2]
n = 1; x = -pi/4 + pi = 3pi/4 ∈<span>[-3p/2;5p/2]
</span>n = 2; x = pi/4 + 2pi = 9pi/4 ∈<span>[-3p/2;5p/2]
</span>n = 3; x = -pi/4 + 3pi ∉[-3p/2;5p/2]
Ответ: x = -5pi/4 ∪ x = pi/4 ∪ x = 3pi/4 ∪ x = 9pi/4
5) sinx = -√3/2;
x = (-1)^(n+1)* arcsin(|-√3/2|) + pi*n;
x = (-1)^(n+1)* pi/3) + pi*n; n ∈ Z
n = -2; x = -pi/3 - 2pi ∉[-2p;2p]
n = -1; x = pi/3 - pi = -2pi/3;
n = 0; x = -pi/3 ∈[-2p;2p]
n = 1; x = pi/3 + pi = 4pi/3 ∈[-2p;2p]
n = 2; x = -pi/3 + 2pi = 5pi/3 ∈[-2p;2p]
n = 3; x = pi/3 + 3pi ∉[-2p;2p]
Ответ: x = -2pi/3 ∪ x = -pi/3 ∪ x =4pi/3 ∪ x = 5pi/3
5 - простое число, поэтому (x + 2)*(y - 3) = 5 => x + 2 = 1, y - 3 = 5 или x + 2 = 5, y - 3 = 1 или x + 2 = -1, y - 3 = -5 либо x + 2 = -5, y - 3 = -1. Тогда имеем следующие целочисленные решения: x = -1, y = 8, x = 3, y = 4, x = -3, y = -2 и x = -7, y = 2. Всего четыре решения (-1,8), (3,4), (-3,-2) и (-7,2).
1) 30%=30/100=3/10=0,3
Стоимость 1 книги = 0,3*320=96 (руб)
2) 45%=45/100=0,45
Стоимость 2 книги = 0,45*320=144 (руб)
3) На 144-96=48 (руб) 1 книга дешевле 2-ой (или 2 книга дороже 1-ой).