Общее сопротивление R123 найдём как 1/R123=1/R1+1/R2+1/R3=1/20+1/15+1/5=
Графически не получися, ибо нужно чертить
<span>630 Па=630Н/м²= 63кг/м²,</span>
<span> V=0.7м³, если вес воздуха не учитывать(нет его плотности) то состоящий только изо льда снег весит Р= 0.7х900=630кг,</span>
<span> следовательно в снеге 10% льда.</span>
Ответ:
Объяснение:
ВСЁ ПОКАЗАНО И РАСПИСАНО НА ФОТО
Я решу всё подробно, но в ходе решения будет понятно, что не будет брусок ускоряться, так что я покажу фишку, с которой стоит начинать решение подобных задач, но это в конце.
Начертим чертёж, по которому мы предполагаем, что брусок всё-таки двигается.
теперь расписываем силы по осям.
Ось Y возьмём перпендикулярно накл. плоскости и направим по направлению силы нормальной реакции опоры.
Ось X возьмём параллельно ей и направим вниз по наклонной плоскости.
так
m;Y=> N-mg*cosL=0=>N=mg*cosL( cos L из проекции на ось x(L= альфа=30 градусов))
m;X=> mg*sinL - fтр=ma, где fтр=µ*N, А N нам известно.
таким образом
mg*sinL - µmg*cosL=ma
Массы сокращаются =>
g*sinL -µg*cosL=a
Отсюда сразу видно, что a будет меньше нуля, ибо получается
5-sqrt(3)*g =a=-12.32, если подставить твоё значение силы трения ( 0.866).
Ответ : никуда он двигаться не будет( сам по себе, о чём в задаче и говорится ( ибо не говорится об обратном).
Теперь фокус
tgL0 = µ - условие при котором брусок находится на грани скольжения. В нашем случае тангенс альфа равен 0.577, а сила трения куда больше. Таким образом задача решается в одно действие, при условии, что µ > tgL0.
Достаточно подробно?)