Начнём с того, что cos 70 градусов число иррациональное и равно приблизительно 0.34 Из определения косинуса следует, что
Cos 70 = AH/AB => AB = AH/cos 70 =
приблизительно 56 см. Из треугольника ABH по теореме Пифагора находим BH => BH^2 =
AB^2-AH^2= 53 см. Из подобия прямоугольных треугольников следует, что высота BH равна среднему геометрическому проекций катеров на гипотенузу, т.е BH = корень квадратный из AH * HC => HC = 147 см. Гипотенуза AC =
AH+HC=166 см. Находим площадь данного треугольника: S= (53*166)/2=4400 см^2. Все величины являются приблизительными
Итак, проведем в ромбе две диагонали. Одна из них равна 42, соответственно половина ее = 21. Проведя эти диагонали, найди их точку пересечения О, мы тем самым поделили наш ромб на 4 части. Найдем площадь одной из них. Все стороны ромба равны (по определению). Так что спокойно рассматривай любой из получившихся треугольников - исход будет один, а именно сторона ромба будет являться гипотенузой данного треугольника ( т.к по свойству ромба его диагонали пересекаются под прямым углом). Половина диагонали нам известна, т.е значение катета мы знаем, ну а дальше в ход идёт Пифагор, а точнее его теорема.
29^2=21^2+х^2. Из чего следует, что: 841-441=х^2.
400=х^2
х=20
Теперь, найдем площадь ромба:
Она будет численно равна:
S=4s ( s-одинаковые площади маленьких треугольников) Найдем s=20*21:2
s=210
Следовательно S=840 см квадратных
Вот и всё)
Площадь треугольника - половина произведения основания на высоту проведенную к ней.
№29.
основание - 20
высота - 7
площадь 20*7/2=70 ед².
№30
основание - 33
высота - 8
площадь - 33*8/2=132 ед².
№31
площадь прямоугольного треугольника - половина произведения его катетов.
один катет - 8
второй катет по т. Пифагора - √(17²-8²)= 15
площадь - 8*15/2=60 ед².
высота с боково стороной образует прямоугольный треугольник