Из прямоугольного треугольника CDB вычислим BD по теореме Пифагора
- Высота, опущенная из вершины прямого угла на гипотенузу, равна среднему геометрическому проекций катетов на гипотенузу
Тогда гипотенуза AB = AD + BD = 8 + 1 = 9 см.
По теореме Пифагора: см.
- Косинус - отношение прилежащего катета к гипотенузе
<h3><em><u>Ответ: AC = 6√2 см; AB = 9 см; BD = 1 см; cos∠B = 1/3.</u></em></h3>
Пусть диагонали ОСНОВАНИЯ (не параллелепипеда) m и n, а высота (она же боковая сторона) h,тогда h = m*tg(60) = n*tg(45); тот есть m*корень(3) = n (и равно = h); Теперь смотрим на основание. Параллелограмм, у него стороны 17 и 31, и отношение диагоналей m/n = корень(3). Обозначим острый угол A. Тогда n лежит напротив него (а m - напротив тупого угла 180 - А).
m^2 = 17^2 + 31^2 + 2*17*31*cos(A);
n^2 = 17^2 + 31^2 - 2*17*31*cos(A);
(m/n)^2 = 3 = (17^2 + 31^2 + 2*17*31*cos(A))/(17^2 + 31^2 - 2*17*31*cos(A));
<span>2*17*31*cos(A) = (17^2 + 31^2)/2; ( На первый взгляд кажется, что нам нужен угол А, но))
</span><span>n^2 = h^2 = (17^2 + 31^2)/2 = 625; n = h = 25; m = n*корень(3) = 25*корень(3);
</span><span>d1 = n/cos(45) = 25*корень(2);
</span><span>d2 = m/cos(60) = 50;</span>
В трапеции ABCD основания AD и BC относятся как 3:2, а сумма углов при основании AD равна 90°. Найдите радиус окружности, проходящей через точки A и B и касающейся прямой CD, если AB = 3.
===========================================================
<h3>Продолжения боковых рёбер трапеции пересекаются в точке Е и образуют прямоугольный треугольник АЕD, ∠EAD + ∠EDA = 90° - по условию</h3><h3>ΔBCE подобен ΔAED по двум углам (∠AED - общий, ∠ЕВС = ∠EAD - как соответственные углы при BC || AD и секущей АВ)</h3><h3>BC/AD = BE/AE ; 2/3 = BE/(AB + BE) </h3><h3>2/3 = BE/(3 + BE) ⇒ 6 + 2BE = 3BE ⇒ BE = 6</h3><h3>▪Радиус, проведённый в точку касания, перпендикулярен касательной ⇒ OM⊥DM</h3><h3>▪Радиус, перпендикулярный хорде, делит её пополам ⇒ OH⊥AB, AH = HB = AB/2 = 3/2 = 1,5</h3><h3>В четырёхугольнике ОМЕН все углы прямые ⇒ ОМЕН - прямоугольник.</h3><h3>Значит, НЕ = ОМ = R = HB + BE = 1,5 + 6 = 7,5</h3><h3><u><em>ОТВЕТ: R = 7,5</em></u></h3><h3><u><em /></u></h3>
Ну в 3 я не помню как, я нашла площадь у двух треугольников и сложила, получилось 864.
в 4 по теорме пифагора 625+3600=4225, отсюда гипотенуза равна 65.
в 5 по теорме пифагора 49-25=24, значит катет равен корень из 24.
в 6 пусть 16 будет большая диагональ, мешьшую сами проводим, они отсекают равны стороны. там получается прямоугольный треугольник. по теорме пифагора она равна 6, значит меньшая равна 12