1) Вычислим координаты вершин треугольника ABC.
Точка А пересечения прямых y = 3x - 1, y = 2x + 5
2x + 5 = 3x - 1
x = 6
y = 2*6 + 5 = 17
A(6;17)
Точка B пересечения прямых y = 3x - 1, y = 11x + 23
11x + 23 = 3x - 1
8x = - 24
x = - 3
y = 3*(-3) - 1 = - 10
B(- 3; - 10)
Точка C пересечения прямых y = 2x + 5, y = 11x + 23
11x + 23 = 2x + 5
9x = - 18
x = - 2
y = 2*(- 2) + 5 = - 4 + 5 = 1
C(- 2; 1)
2) Найдём длину стороны АВ треугольника:
AB = √((-3-6)² + (-10-17)²) = √(81 + 729) = √810 = 9√10
3) Вычислим
высоту треугольника. Если дано уравнение прямой
ax + by + c<span> = 0 и координаты точки С(х</span>₀<span>;у</span>₀<span>),
то расстояние
от точки С до прямой находится по формуле:</span>
<span>h = Iax</span>₀<span> + by</span>₀<span> + cI / √(a</span>²<span> + b</span>²<span>)</span>
Уравнение
прямой АВ: у = 3х + 1 или 3х - у + 1 = 0
a = 3, b = - 1, c = 1
Координаты
точки С(-2;1).
h = I<span> </span>3*(-2) + (-1)*1 + 1I = I-6I = 6
Найдём
площадь треугольника по формуле:
S = ½*AB*h
<span>S = ½*9√10* 6 = 27√10</span>