N14
Треугольник ABD - равнобедренный. По свойства равноб.треугольника углы при основании равны, то есть ∠BAD = ∠BDA → ∠BAD = 70 градусов. Если ∠BAC и ∠CAD равны, то AC - биссектриса, делящая угол пополам → ∠BAC = ∠CAD = 70/2 = 35 градусов каждый.
Если 2 угла при основании равны по 70 градусов, то можно найти ∠B. 180 - (70+70) = 180-140 = 40 градусов.
Перейдём к треугольнику BAC. Известен угол B и угол BAC. Можем найти угол ACB. 180 - (40+35) = 180-75 = 105 градусов ∠ACB
Площадь параллелограмма: S=ab·sinα=24·18·√3/2=216√3 дм² - это ответ.
Диагональ, которая перпендикулярна основаниям разбивает трапецию на два подобных треугольника, у которых общей стороной является эта самая диагональ, одновременно являющейся высотой трапеции.
В малом треугольнике с катетом (снованием) 2 см, протв высоты h находится угол α(неизвестный), тогда (согласно условию) угол, примыкающий к катету (основанию) в 18 см равен 90-α. Тогда в большом тр-ке угол между большей боковой стороной трапеции и высотой равен α, а в малом тр-ке угол между высотой и малой боковой стороной равен (90-α). Очевидно, что треугольники подобны, раз у них все соответствующие углы равны.
В подобных тр-ках стороны, лежащие против равных углов, пропорциональны:
2:h =h:18
h² = 36
h = 6
Площадт трапеции равна произведению полусуммы оснований и высоты:
Sтрап = 0,5(2 + 18)·6 = 60(см²)
1) они опираются на одинаковые дуги, значит и равны