Решение
х∧3 - 5х + 4 = 0
корень уравнения х1 = 1
Применим теорему Безу:
Делим уголком:
х∧3 - 5х + 4 / <u> (х -1)</u>
<u>-(х∧3 - х∧2) </u> х∧2 + х - 4<u>
</u> х∧2 - 5х
<u>- (х∧2 - х)
</u> -4х + 4
<u>-(-4х + 4)</u>
0
х∧3 - 5х + 4 = (х -1)*(х∧2 + х - 4)
х∧2 + х - 4 = 0
D = 1+ 4*4 = 17
x2 = (-1-√17)/2
x3 = (-1+√17)/2
x⁴ - 3x² + 9 = 0
Сделаем замену :
x² = m ≥ 0
m² - 3m + 9 = 0
D = (-3)² - 4 * 9 = 9 - 36 = - 27 < 0
Дискриминант меньше нуля, значит действительных корней нет.