1.
2.a)
b)
x=28;
c)
3.
a)
b) [tex](1 \frac{11}{25})^{\log_{9}(x)}>( \frac{5}{6} )^{\log_{ \frac{1}{9}}(6-5x)} ; \left \{ {{x>0;} \atop {x< \frac{6}{5} }} \right.\\ ( \frac{36}{25} )^{\log_{9(x)}}>( \frac{6}{5} )^{\log_{9}(6-5x)};\\ 2\log_{9}(x)>\log_{9}(6-5x); x^2+5x-6>0;\\ D=25+24=49;\\ x_{1}= \frac{-5-7}{2}=-6\\ x_{2}= \frac{-5+7}{2}=1\\
\left \{ {{01}} \right. }} \right.\\
1<>
При х равном:
1)х=1
2)х=9
3) х=-14
4) х=2
4х-5(х-9)=12
4х-5х+45=12
-1х=12-45
-1х=-33
х=33
25x - 15x = 100 + 10 + 50 - 90
10x = 70
x = 7.
Ответ: 7.