Формула нахождения координаты х вершины параболы
а координату y будем находить методом подстановки x
а). так как b здесь равен нулю, то при делении нуля получаем 0
х верш = 0
у верш = 0
координата точки (0;0)
б). после подстановки в формулу и решения выражения получаем
х верш = 1,5
у верш = - 1,5
координата точки (1,5;-1,5)
в) то же самое, подставляем в формулу и получаем
х верш = -5
у верш = 5
координата точки (-5;5)
г). для удобства раскроем скобки, получим выражение: x^ - 2x +1
и по формуле:
х верш = 1
у верш = 0
координата точки (1;0)
д). опять раскроем скобки, получим 2(x^+6x+9) = 2x^ + 12x +18
х верш = -3
у верш = 0
координаты точки (-3;0)
е). x^ - 4x +3
х верш = 2
у верш = 1
координата точки (2;1)
S' = (<span>2t²+t-2)' = 4t - 2
V = S'(3) = 4 × 3 - 2 = 10
Eк = (mV²)/2 = (5 × 10²)/2 = 250 Дж
</span>
(6а-в)-(2а-3в) = 6а-в-2а-3в=4а-4в
7х-(4а+2а)=7х-6а
1)1/2sin(540+b)*sin(b+810)=1/2sin(180+b)*sin(b+90)=1/2*(-sinb)*cosb=-1/sin2b
2)sin3acos2a+sin2acos3a-cos(2π-a)=sin(3a+2a)-cosa=sin5a-cosa
3)sin(-a)+cos(π+a)/1+2cos(π/2-a)cos(-a)=-sina-cosa/1+2sinacosa=
=-(sina+cosa)/(sina+cosa)²=-1/(sina+cosa)
4)4sin10*cos50*cos40=4sin10*cos50*sin50=2sin10*sin100=2sin10*sin(90+10)=
=2sin10*cos10=sin20
5)1-cos2a/sin2a=2sin²a/2sinacosa=sina/cosa=tga