Здравствуйте! Конкретные задания вы нигде не найдете до теста. Это противозаконно. Примеры заданий должны были порешать на занятиях, если этого не произошло, то примеры заданий всегда можно найти в Интернете.
Примем за Х количество деталей, которые изготавляет за час второй рабочий, тогда первый рабочий за час изготовит ( Х + 10 ) деталей.
Всю работу первый выполнит за 60 / ( Х + 10 ) часов, а второй за 60 / Х часов. По условию, первый рабочий сделал все детали на 3 часа быстрее второго рабочего, а значит можно составить уравнение:
60 / Х - 60 / ( Х + 10 ) = 3
60 * ( Х + 10 ) - 60 * Х = 3 * Х * ( Х + 10 )
600 = 3 * ( Х² + 10 * Х )
200 = Х² + 10 * Х
Х² + 10 * Х - 200 = 0
D = b² - 4ac = 10² + 800 = 900 в уравнении два корня
Х = ( - b ± √D ) / 2 = ( - 10 ± √900 ) / 2 = ( - 10 ± 30 ) / 2
Х1 = 10 или Х2 = - 20 ( не подходит по условию )
Ответ: второй рабочий изготавливает 10 деталей за час.
Задача довольно легкая. Даже просты перебором всех действий можно найти правильный ответ.
А можно подойти к решению с математической точки зрения, то есть найти для начала сумму всех чисел. В итоге мы получаем 26.
А нам нужно 16.
26-16) = 10
10/2 =5.
Именно такое число нужно отнять.
Значит отнимаем 4 и 1.
Полуается в выражении нужно поставить 2 минуса.
Значение выражений со степенями находятся разными способами. Самый рациональный из них использование свойств степеней. Пример, решение приведенное автором предыдущего ответа.
Можно найти значение данного выражения 3¹⁷*6¹⁶/18¹⁵ чуть по другому. 3¹⁷*6¹⁶/18¹⁵ = 3¹*3¹⁶*6¹⁶/18¹⁵ = 3¹*(3*6)¹⁶/18¹⁵ = 3¹*18¹⁶/18¹⁵ = 3¹*18¹⁶-¹⁵ =3¹*18¹ = 54.
Но я еще учу детей решать такие примеры "прямым или лобовым" способом (для тех кто не запоминает или не умеет пользоваться свойствами степеней). Им просто надо знать определение степени. Так, 3¹⁷ это 3 умноженное само на себя 17 раз, 6¹⁶ - 6 умноженное на 6 16 раз, 18¹⁵ - соответственно 18 15 раз. Они или выписывают это или представляют себе и начинают сокращать 3 и 6 с 18 и так 15 раз. После сокращений остается две "3" и одна "6", перемножают их и получают ответ 54.
Требования к сдаче "ОГЭ (ГИА) в 2015 году ужесточаются, будет усилен контроль за сдачей экзамена.
Чтобы сдать на тройку ОГЭ (ГИА) по математике в 2015 году, надо написать работу на 8 - 15 баллов.
В ОГЭ (ГИА) по математике входит три модуля, оценки по которым суммируются в общий балл.
ОГЭ (ГИА) 2015 по математике сдают 26 мая и это первый экзамен для девятиклассников.