Мощность есть характеристика системы, показывающая, какая работа совершается, или какая энергия производится, в единицу времени. Так что мощность - весьма универсальная физическая величина. Можно говорить о мощности электромотора, мощности животного (лошадиная сила таки да, примерно равна работе, которую средняя лошадь выполняет за 1 с), о мощности взрыва, о мощности излучения звезды, мощности утюга, мощности бензинового двигателя и т. п.
Напряжение - это совершенно самостоятельная физическая величина, причём относящаяся исключительно к электрическим цепям (так что ни о какой универсальности тут говорить не приходится; кстати, напряжение и разность потенциалов не всегда синонимы). Напряжение между двумя точками цепи показывает, какую работу надо совершить, чтоб протащить 1 единицу заряда между этими точками. Ну или, что эквивалентно, какая энергия выделится на этом участке цепи, когда по нему пройдёт 1 единица заряда. Время тут никак не задействовано. Напряжение может быть даже и без совершения какой бы то ни было работы, если цепь разомкнута. Нет тока - нет и совершённой работы - мощность равна нулю, хотя напряжение может быть стопиццот вольт.
Но вот если ток есть, то есть и мощность. Она равна произведению напряжения на ток (для постоянного тока, во всяком случае). Раз энергия выделяется при протекании заряда, то, очевидно, "скорость выделения энергии" пропорциональна скорости протекания заряда. А это и есть ток.
В электротехнике существуют такие понятия как линейное напряжение и фазное напряжение. Линейное напряжение-напряжение между фазами, которое равно 380 В. Фазное напряжение-это напряжение между фазой и нулем, оно равно 220 В будет. Если вы заведете одну и ту же фазу на три клеммы-работать будет. Читайте инструкцию внимательнее.
Вспомним физику. Трансформатор предназначен для изменения величины переменного напряжения, при этом мощности на входе и выходе при кпд = 1 равны. Отсюда следует, что при снижении напряжения на выходе в несколько раз получаем увеличение выходного тока во столько же раз, и наоборот. Пример. Входное напряжение трансформатора равно 220 вольт при токе в 1 ампер, а на выходе 22 вольта при токе в 10 ампер. Конечно, нужно учесть, что кпд трансформатора меньше 1, то и ток будет несколько меньше. Что дает практически трансформатор? Предположим, что нужно передать по проводам мощность в 22 млн. квт при напряжении 220 вольт. Ток будет 100000 ампер. Нужен провод очень большого диаметра. Поэтому напряжение можно увеличить в 10000 раз, а ток уменьшить во столько же раз. Диаметр провода существенно уменьшится, что упрощает создание линий передачи электроэнергии.
Такое увеличение напряжения позволило немного снизить потери в низковольтных сетях без существенных затрат. Ранее такой переход произошел в Европе, и мы просто присоединились к международному стандарту. Это не сказалось на работе электроприборов, за исключением ламп накаливания, так как верхний допускаемый предел напряжения остался тем же.
Умножитель напряжения служит для получения постоянного высокого напряжения путем преобразования переменного напряжения диодно-емкостными цепочками. Широкое применение имели в цветных кинескопных телевизорах для получения анодного напряжения кинескопа.
Также использовались в самодельных устройствах запуска ламп дневного света с перегоревшими нитями накаливания.