S = (1/2)*АВ*СН = (1/2)*7*9 = 31.5 ед²
На этом рисунке 16, и 8 , которые можно доказать
KM-KN=MN
-NM-NR=-MR
PQ-RQ=PR
-MR+PR=PM
Вроде так.
Задача очень упрощается, если на время забыть об условии и просто найти площадь и высоту треугольника к стороне АС = 12. Просто проведем эту высоту ВН = h, и обозначим АН = z; тогда
z^2 + h^2 = 5^2;
(12 - z)^2 + h^2 = 97;
Легко это решить
144 - 24*z + z^2 + h^2 = 97; 144 - 24*z + 25 = 97; z = 3;
Очевидно, что АHВ - "египетский" треугольник, АВ = 5, АH = 3, ВH = h = 4;
Площадь АВС Sabc = 12*4/2 = 24; всё это пригодится.
Теперь заметим, что треугольник BNP подобен ABC. Ясно, что их высоты пропорциональны сторонам. Обозначим NP = PQ = MQ = NM = x; высота АВС h = 4; высота BNP равна 4 - х;получаем
(4 - x)/x = 4/12; x = 3; x^2 = 9 - это площадь квадрата. А отношение площадей квадрата и треугольника АВС равно 9/24 = 3/8;
Те, кто составлял задачу, наверняка предполагали, что решение пойдет в "обратном" порядке, то есть сначала доля площади квадрата от площади АВС будет выражена через x, потом х будет выражен через h, и только потом будет вычислена h. После чего вся эта "английская сказка" будет прочитана в обратном порядке :)) После некоторого размышления я пришел к выводу, что проще сразу начать с конца :))