Ответ ответ ответ ответ ответ
<span>1) (1/9+b)^2 =1/81+2/9b+b</span>²<span>
,2) (k/2-t/5)^2=k</span>²/4-kt/5+t²/25<span>
3) (y+3 1/4)^2=y</span>²+6.5y+169/16<span>
4) (4 1/2+t)^2=81/4+9t+t</span>²
(3a²-15)/(a-√5) (в числителе вынесем три за скобку)
3(a²-5)/(a-√5) ( (a²-5) разлагается на множители по формуле сокращенного умножения на (a+√5)(a-√5)/(a-√5) так и запишем)
3(a+√5)(a-√5)/(a-√5)=3(a+√5) ((a-√5) в числителе сокращается с (a-√5) в знаменателе)
Ответ: 3(a+√5)
y=kx+1 и y=kx^2−(k−3)x+k приравниваем, решаем и требуем
чтобы было 2 корня D>0
kx+1=kx^2−(k−3)x+k
kx^2-(k-3)x+k-kx-1=0
kx^2-(2k-3)x+k-1=0
D=(2k-3)^2-4k(k-1)=4k^2-12k+9-4k^2+4k=-8k+9>0
8k<9
k<9/8
теперь y=kx+1 и y=(2k−1)x^2−2kx+k+9/4 приравниваем и требуем
чтобы не было корней D<0
kx+1=(2k−1)x^2−2kx+k+9/4
(2k−1)x^2−2kx+k+9/4-kx-1=0
(2k−1)x^2−3kx+k+5/4=0
D=(3k)^2-4(2k-1)(k+5/4)=9k^2-(2k-1)(4k+5)=9k^2-8k^2+4k-10k+5=k^2-6k+5=(k-1)(k-5)<0
1<k<5
пересекаем k<9/8 и 1<k<5 - ответ 1<k<9/8
ответ 1<k<9/8