Y=1/(X^2-1)
1)D(y)=(-беск;-1) (-1;1) (1;+беск), т.к. x^2-1=0; x^2=1;x=+-1
2) y=0; 1/(x^2-1)=0 решений не имеет, график не пересекает ось х
пересекает ось у х=0; у=1/(0-1)=-1; (0;-1)
3)у>0 ; x^2-1>0; x^2>1; (-,беск; -1) (1;+беск)
y<0; x^2-1<0; x^2<1; (-1;1)
4) y=f(x); f(-x)=1/((-x)^2-1)=1/(x^2-1)=f(x); заданная ф-я чётная
её график симметричен относительно оси у
5)непериодическая; 6) х=-1 и х=1-вертикальные асимптоты (знаменатель обращается в 0!) Они и есть точки разрыва
7) y '=-1/(x^2-1)^2 *(x^2-1)'=-2x/(x^2-1)^2; -2x=0; x=0
(x^2-1)^2>0!; -2x>0 => x<0,
-2x<0 =>x>0
y ' + + - -
------- -1 -----------0--------------1---------
y возрас тает убывает убывает х=0-точка макс; (0;-1)
8)y ''=-(2x/(x^2-1)^2)'=-(2(x^2-1)^2-2x* 2(x^2-1)*2x)/(x^2-1)^4=-((x^2-1)(2x^2-2-8x))/(x^2-1)^4=-(2x^2-8x-2)/(x^2-1)^3
y ''=0 дальше сами
20+8х-20=14х+12
8х-14х=12
-6х=12
Х=-2
<span>2x-3y=11 </span>
<span>5x+y=2</span>
<span>у=2-5х</span>
<span>2х-3(2-5х)=11</span>
<span>2х-6+15х=11</span>
17х=17
х=1
у=-3
Ответ: (1; -3)