1/3 - x = 1/6 + 2x
2x - x = 1/6 - 1/3
2x - x = 1/6 - 2/6
x = - 1/6
Замена 9^sinx=t
t+1/t=10/3
3t²+3-10t=0
D=100-4*3*3=64
t1=(10+8)/6=3 t2=(10-8)/6=1/3
9^sinx=3 9^sinx=1/3
2sinx=1 2sinx=-1
sinx=1/2 sinx=-1/2
x=(-1)^n π/6+πn, n∈Z x=(-1)^(n+1) π/6+πn, n∈Z
Решение смотри в приложении
<span>Решение
</span>3 arcsin 1/2+4 arccos(-1/2)-arctg(-√3) = <span>3*(</span>π/6) <span>+ 4*(2</span>π/3) <span>- 2</span>π/3 =
<span>= </span>π/2 + 8π/3 - 2π/3 = π/2 + 2π = 5π/2<span>
</span>