30 мин=1/2 ч=0,5 ч
Пусть х км/ч - скорость автобуса до остановки. Тогда скорость автобуса после увеличения (х+5) км/ч. До остановки автобус проехал 2х км, значит ему осталось проехать (260-2х) км. Если бы он ехал с первоначальной скоростью, то времени потребовалось бы (260-2х)/х, но с увеличением скорости он проехал за (260-2х)/(х+5). Составим и решим уравнение:
Значит первоначальная скорость автобуса 40 км/ч
Ответ 40 км/ч
Чтобы решить дробное уравнение, необходимо:
1. найти общий знаменатель дробей, входящих в уравнение;
2. умножить обе части уравнения на общий знаменатель;
3. решить получившееся целое уравнение;
4. исключить из его корней те, которые обращают в ноль общий знаменатель.
Пример:
Реши дробное уравнение 3x−1+2=4−xx−1.
1. находим значения переменной, при которых уравнение не имеет смысл
3x−1+2=4−xx−1x−1≠0поэтомуx≠1
2. находим общий знаменатель дробей и умножаем на него обе части уравнения
3x−1+2\(x−1)1=4−xx−13+2(x−1)x−1=4−xx−1∣∣⋅(x−1)
3. решаем полученное уравнение
3+2(x−1)=4−x3+2x−2=4−x3x=3x=1
4. исключаем те корни, при которых общий знаменатель равен нулю
В первом пункте получилось, что при x=1 уравнение не имеет смысл, поэтому число 1 не может являться корнем данного дробного уравнения. Следовательно, у данного уравнения вообще нет корней.
При решении уравнения можно использовать основное свойство пропорции.
Основное свойство пропорции: Еслиab=mn,то a⋅n=b⋅m
16x−12=19x+186x−12≠09x+18≠0x≠2x≠−216x−12=19x+181⋅(9x+18)=1⋅(6x−12)9x+18=6x−123x=−30x=−10−10≠2−10≠−2Кореньx=−10Проверка:16⋅(−10)−12=?19⋅(−10)+181−60−12=?1−90+181−72=?1−72
А)8х( в квадрате) +2х-3
Б) 5х ( в квадрате) - х -0