По теореме Виета
х₁+х₂=-p
х₁х₂=51
подставляя х₁=3
3+х₂=-p
3х₂=51
система уравнений. Решаем.
х₂=17
3+17=-p
p=-20
Замечание: от обозначения переменной не зависит запись функции.Можно,например, записать заданную функцию так: , где переменная обозначена буквой z.
Все полностью жбердм. Бірақ ұят болды ше 10сынып оқып 7 сыныптың есебін шгарып
y=kx+1 и y=kx^2−(k−3)x+k приравниваем, решаем и требуем
чтобы было 2 корня D>0
kx+1=kx^2−(k−3)x+k
kx^2-(k-3)x+k-kx-1=0
kx^2-(2k-3)x+k-1=0
D=(2k-3)^2-4k(k-1)=4k^2-12k+9-4k^2+4k=-8k+9>0
8k<9
k<9/8
теперь y=kx+1 и y=(2k−1)x^2−2kx+k+9/4 приравниваем и требуем
чтобы не было корней D<0
kx+1=(2k−1)x^2−2kx+k+9/4
(2k−1)x^2−2kx+k+9/4-kx-1=0
(2k−1)x^2−3kx+k+5/4=0
D=(3k)^2-4(2k-1)(k+5/4)=9k^2-(2k-1)(4k+5)=9k^2-8k^2+4k-10k+5=k^2-6k+5=(k-1)(k-5)<0
1<k<5
пересекаем k<9/8 и 1<k<5 - ответ 1<k<9/8
ответ 1<k<9/8
Неполным квадратным уравнением является такое уравнение, при котором b = 0, либо с = 0, либо b = c = 0.
Рассмотрим вариант, когда с = 0.
Решим уравнение:
При m = 5 третий коэффициент квадратного уравнения равен 0.
Подставим m = 5 в исходное уравнение.
Тогда,
Уравнение
является неполным квадратным уравнением, так как у него отсутствует третий коэффициент с.
Найдем корни данного уравнения:
Итак, при m = 5 квадратное уравнение является неполным квадратным уравнением