Так как трапеция равнобедренная, то высоты, являющиеся перпендикулярами, отсекут одинаковые части по 3 дм. Далее по теореме Пифагора.
Пусть имеем трапецию АВСД.
По заданию ВС = 4 см, АД = 8 см.
Площадь трапеции 21 см².
Находим высоту h трапеции.
h = S/Lср = 21/((4+8)/2) = 21/6 = 7/2.
Находим угол α между диагональю АС и стороной АД.
tg α = Н/(АД-((АД-ВС)/2))= (7/2)/(8-(8-4)/2) = 7/12.
α = arc tg (7/12) = <span>
30,25644</span>°.
Определяем величину половины угла А.
tg А = h/<span>((АД-ВС)/2)) = (7/2)/((8-4)/2) = 7/4.
A = arc tg(7/4) = </span><span>
60,25512</span>°.
A/2 = <span>
60,25512/2 = </span><span><span>30,12756</span></span>°.
Отсюда видим, что биссектриса проходит ниже диагонали и пересекает боковую сторону.
Правильная треугольная призма<span> — призма, в основаниях которой лежат два правильных треугольника, а все боковые грани строго перпендикулярны этим основаниям. Следовательно основания призмы-это равносторонние треугольники, а боковые грани прямоугольники. По </span>условию в пряпоугольнике, являющемся боковой гранью одна из сторон 9 см, а диагональ 15 см. По теореме Пифагора найдем вторую сторону прямоугольника=15 в квадрате-9 в квадрате и все под корнем=225-81 все под корнем=12. Вторая сторона еще будет являться стороной равностороннего треугольника в основании.