㏒₂(4х²)+35<span>
-------------------- ≥ -1 ОДЗ
х >0 , </span>㏒²₂(х)-36≠0<span>
</span>㏒²₂(х)-36
㏒²₂(х)-36=(㏒₂(х)-6)*(㏒₂(х)+6) <span>
(</span>㏒₂<span>(х)-6)≠0
(</span>㏒₂(х)+6) ≠0<span>
(</span>㏒₂<span>(х)≠6)
(</span>㏒₂(х)≠-6) <span>
х≠64 х≠1/64
</span>㏒₂(4х²)+35 ≥ -1*(㏒²₂(х)-36)<span>
</span>㏒₂<span>(2х)²+35 ≥ 36 - </span>㏒²₂(х)<span>
</span>㏒²₂(х)+ 2㏒₂2х - 1≥0
<span>
</span>㏒²₂(х)+ 2*(㏒₂2+㏒₂<span>х ) - 1≥0</span><span>
</span>㏒²₂<span>(х)+ 2+ 2</span>㏒₂<span>х - 1≥0</span><span>
</span>㏒²₂<span>(х)+ 2</span>㏒₂х +1≥
0 ,замена ㏒₂х=а<span>
а²+2а+1≥0
D=4-4=0
a=-2/2=-1 </span>㏒₂<span>х=-1
х=1/2 </span><span>
х</span>∈
(0;1/64)∪[1/2]∪(64;+∞)<span>
---------------------------------------------------------------------------------------
</span>
㏒₇(49х²)-7<span>
---------------- </span>≤ 1 ОДЗ
х >0 , ㏒²₂(х)- 4 ≠0 ㏒²₇(х)-4 ㏒²₇(х)-4 =(㏒₇(х)- 2 )*(㏒₇(х)+ 2)
<span>
(</span>㏒₇<span>(х)- 2)≠0
(</span>㏒₇(х)+ 2) ≠0<span>
</span>㏒₇<span>(х)≠2 </span>㏒₇(х)≠- 2<span>
х≠49 х≠1/49
</span>
㏒₇(49х²) - 7 ≤ 1*(㏒²₇(х) -4 ) <span>
</span> ㏒₇(7х)² - 7 ≤ ㏒²₇(х) - 4 ㏒²₇(х) - ㏒₇(7х)²+3 ≥ 0 ㏒²₇(х) - 2*(㏒₇7+㏒₇х)+3 ≥ 0 ㏒²₇(х) - 2*( 1+㏒₇х)+3 ≥ 0 ㏒²₇(х) - 2- 2㏒₇х +3 ≥ 0 ㏒²₇(х) - 2㏒₇х +1 ≥ 0 , замена ㏒₇х =а
а²-2а+1≥0
D=4-4=0
a=2/2=1 ㏒₇х =1 ⇒ x=7
x∈(0 ;1/49) ∪[7] ∪(49;+∞)
<span>
</span>