................................................
F'(x)=cosx-1/2=0;
cosx=1/2;
x=+-pi/3+2pik
1)8cosπ/33*cos2π/33*cos4π/33*cos8π/33*
cos16π/33=(умножим делим sinπ/33)=
(8*cosπ/33*sinπ/33):(sinπ/33)*(cos2π/33*
cos4π/33)*cos8π/33*cos16π/33=
=4/(sinπ/33)*sin2π/33*cos2π/33*cos4π/33*
cos8π/33*cos16π/33=2/(sinπ/33)*sin4π/33*
cos4π/33*cos8π/33*cos16π/33=1/(sin2π/33)*
sin8π/33*cos8π/33*cos16π/33=1/(sinπ/33)*1/2*
sin16π/33*cos16π/33
1/(sinπ/33)*1/2*1/2sin32π/33=1/(sinπ/33)*1/4*
sin(π-32π/33)=1/(sinπ/33)*
1/4*sinπ/33=1/4
8√5 + 6 + 8*√5 - 3 = 8√5 + 6 + 8√5 - 3 = 16√5 + 3 = √20 + 3