В треугольнике АВС известны 2 угла,⇒третий угол –∠ВАС=180°-(45°+60°)=75°.
По условию МN║AB, АN при них - <u>секущая</u>. Поэтому накрестлежащие ∠ВАN=∠АNМ. С другой стороны, в ∆ АМN стороны АМ=MN (дано), и по признаку <em>равнобедренного треугольника</em> ∠NAM=∠ANM, из чего следует равенство ∠ВАN=∠NAM.⇒ ∠ВАN=75°:2=37,5°
∠А=90-60=30°.тогда ВМ=1/2*10=5-как катет против угла 30°.
s=(BC+AD)/2*BM
s=(4+10,5/2*5)=30,25
Брюссель - столица Бельгии и Брюссельского столичного региона.
<em>Сечение шара плоскостью - всегда круг</em>.
На рисунке приложения АВ - диаметр сечения шара, т.О - его центр,
ОВ - радиус шара, ОН - расстояние от центра до плоскости сечения.
<em>Расстояние от точки до плоскости – длина отрезка, проведенного перпендикулярно от точки к плоскости</em>. ⇒ <u>∆ ОНВ - прямоугольный. </u>
По т.Пифагора R=ОВ=√(BH²+OH²)
ВН- радиус сечения.
Из формулы S=πr²
BH²=1600π:π⇒
ВН=40 (дм)
<em>R</em>=√(40²+9²)=<em>41</em> (дм)