Чтобы определить наибольшую степень числа 10, на которую делится число n!=1*2*3...n, надо сначала найти наибольшую степень числа 5, на которую оно делится. Каждое пятое число 5, 10, 15, 20, 25, 30 и т. д. делится на 5, всего таких чисел, не превосходящих числп n, Цел [n/5] (Целое, ближайшее к n/5). Однако некоторые мз них делятся на вторую степень числа 5, а именно 25, 50, 75 100 и т. д. ; таких чисел существует Цел [n/25]. Некоторые из них делятся на третью степень числа 5, т. е на 125: 125, 250, 375 и т. д. ; их существует Цел [n/125] и т. д. Это показывает, что число делителей числа n! на степени 5 таково:
Цел [n/5]+Цел [n/25]+Цел [n/125]+...(1)
В этой сумме достаточно выписать лишь те члены, в которых целое частное не равно нулю (числитель не меньше знаменателя) . Точно такие же рассуждения можно провести для степеней 2. Количество делителей n! на степени 2:
Цел [n/2]+Цел [n/4]+Цел [n/8]+...
Ясно что это выражение не меньше выражения (1), т. е. в числе n! каждому множителю 5 можно подобрать множитель 2. Таким образом, выражение (1) дает величину степени числа 10, делящей n!, которая равна числу нулей, стоящих в конечной части записи числа.
<span>Для n=100. Цел [100/5]=20, Цел [100/25]=4, Цел [100/125]=0, поэтому 100! заканчивается 24 нулями. </span>
Оьвет этого примера :7856
Пошаговое объяснение:
с = -3 - в четной степени будет положительное число. (-3)² = 9.
23 - с⁴ = 23 - (-3)⁴ = 23 - 9*9 = 23-81 = -58 - ответ
X-y=247
Возможны два варианта:
<span>1.x=293 или 2.y=293
</span>1. Если x=293, то 293-y=247, y=46
293+46=339
2. Если y=293, то x-293=247, x=540
540+293=833
Ответ: 339 или 540