Cosx+2cos²x-1-2=0
2cos²x+cosx-3=0
cosx=a
2a+a-3=0
D=1+24=25
a1=(-1-5)/4=-1,5⇒cosx=-1,5∉[-1;1]
a2=(-1+5)/4=1⇒cosx=1⇒x=2πn
Ответ х=-2π
Y=-1,8x
36=-1,8x
1,8x=-36
X= -36:1,8
X=-20
<em>Скорости лодок одинаковы, пусть х км/ч., скорость течения пусть у км/ч., до встречи они проплыли -</em>
<em>которая по течению 3*(х+у), которая против течения 3*(х-у)</em>
<em>разность составляет 7.2 км, отсюда уравнение </em>
<em>3(х+у)-3*(х-у)=7.2</em>
<em>3*(х+у-х+у)=2.4*3</em>
<em>2у=2.4</em>
<em>у=1.2</em>
<em>Скорость течения 1.2 км/ч.</em>
task/29847784
1 . Напишите уравнения касательных к графику функции у=2x²-x+3 проходящих через его точку а) А(-1 ; 6) , б) D (0 : 3)
решение. Уравнение касательной к графику функции y =f(x) в точке проходящей через его точку M (x₀ ; f(x₀) ) имеет вид y - f(x₀) = f '(x₀)*(x - x₀ ) иначе по другому y =y '(x₀)*(x - x₀ )+ y₀
y ' =(2x²-x+3) ' = 4x -1 .
а) y₀ = 2*(-1)² - 1 + 3 = 4 ; y ' (-1) = 4*(-1) -1 = - 5 ⇒ y = -5*(x +1)+4⇔ y = - 5x - 1 .
б) y₀ = 2*0² - 0 + 3 = 3 ; y ' (-0) = 4*0 - 1 = - 1 ⇒ y = -1*(x -0) +3⇔ y = - x +3 .
2. найдите угол φ между касательными ,проведенными к графикам функции у=2x²-3 и у=2x²- x+3 в точку их пересечения
решение. Определим точку P(<u>x₀</u>;y₀) _пересечения графиков данных функций
{ у=2x²-3 ; у=2x²- x+3 . <em><u>2x</u></em><em>²- </em>3 =<em><u>2x</u></em><em>²</em><em></em>- x + 3 ⇔ x=6 ⇒ y =2*6² -3 =69. P(<u>6</u> ; 69)
y ' = (2x²-3 )' = 4x ⇒ k₁ = tgα = 4x₀ =4*6 = 24 ;
y ' = (2x²- x +3 )' = 4x -1 ⇒ k₂ =tgβ =4x₀-1 =4*6 -1= 23 .
tqφ =(k₁ - k₂)/(1+k₁k₂) =1 / (1 +24*23)= 1/553 ⇒ φ =arctg(1/553) .
х км/ч - скорость автобусов
(х-5) км/ч - скорость сближения при движении друг за другом (автобус обгоняет пешехода)
(х+5) км/ч - скорость сближения при встречном движении
Автобусы движутся по кольцевому маршруту, значит, интервал по времени и интервал - расстояние между автобусами одинаковый в оба конца.
1,8:5=9/25(ч) - пешеход проходил расстояние 1,8 км.
27 мин = 9/20 час
(х+5)*9/25=(х-5)*9/20
9х=405
х=45 (км/ч) - скорость автобусов