Т.к. AB = BC, то треугольник ABC - равнобедренный с основанием AC.
Рассмотрим треугольники BAD и BCE. У них:
AB = BC - по условию;
AD = CE - по условию;
угол BAD = углу BCE - т.к. в р/б треугольники углы при основании равны.
Т.к. у равных треугольников соответственные стороны равны, то BD = BE, что и требовалось доказать.
используем правило: Если в равнобедренной трапеции диагонали перпендикулярны, то высота равна полусумме оснований, значит
В треугольнике АОС ОС⊥АС, значит он прямоугольный. ∠САО=90-60=30°.
Касательные, проведённые к окружности из одной точки, равны. АВ=АС.
Прямоугольные треугольники АОС и АОВ равны т.к. ОС=ОВ и АО - общая сторона, значит ∠САО=∠ВАО=30° ⇒ ∠ВАС=60°.
В треугольнике АВС АВ=АС, ∠ВАС=60°, значит ∠АВС=∠АСВ=(180-60)/2=60°, значит ΔАВС правильный (равносторонний).
Доказано.