Поскольку диагонали ромба делятся точкой пересечения пополам, то ОЕ=ОВ=24/2=12
Т.к. диагонали ромба взаимно перпендикулярны, получаем прямоугольные треугольники АОВ, ВОС, СОЕ и АОЕ, которые равны между собой по гипотенузе (она равна 13) и катету (он равен 12).
S ABCE = 4 * S AOB
S AOB = AO*OB : 2
По теореме Пифагора находим катет АО в прямоугольном треугольнике АОВ:
AO=√AB²-OB²=√169-144=√25=5
S AOB=5*12:2=30
<span>S ABCE=4*30=120</span>
Необходимо:
- уметь строить серединный перпендикуляр;
- копировать (переносить) угол;
- знать (использовать при построении) признаки равенства треугольников
1) ∠ABC=∠ABD, BC=BD
△ABC=△ABD (по двум сторонам и углу между ними, AB - общая сторона)
2) ∠NMK=∠PKM, NM=PK
△NMK=△PKM (по двум сторонам и углу между ними, MK - общая)
3) RO=TO, OS=OP
∠ROS=∠TOP (вертикальные углы)
△ROS=△TOP (по двум сторонам и углу между ними)
4) ∠E=∠N, EO=NO
∠EOF=∠NOM (вертикальные углы)
△EOF=△NOM (по стороне и прилежащим к ней углам)
5) ∠Q=∠F, QM=PM
∠QMK=∠PMF (вертикальные углы)
△QMK=△PMF (по стороне и прилежащим к ней углам)
6) ∠BAC=∠DCA, ∠ACB=∠CAD
△BAC=△DCA (по стороне и прилежащим к ней углам, AC - общая)
∠B=∠D, BA=DC (соответствующие элементы равных треугольников)
∠BAC-∠CAD=∠DCA-∠ACB <=> ∠BAO=∠DCO
△BAO=△DCO (по стороне и прилежащим к ней углам)
7) EM=FN, ∠EMN=∠FNM
△EMN=△FNM (по двум сторонам и углу между ними, MN - общая)
∠E=∠F, ∠MNE=∠NMF (соответствующие элементы равных треугольников)
∠EMN-∠NMF=∠FNM-∠MNE <=> ∠EMP=∠FNP
△EMP=△FNP (по стороне и прилежащим к ней углам)
8) AB=AD, BC=DC
△ABC=△ADC (по трем сторонам, AC - общая)
Если внешний угол при вершине N равен 150 градусов, то внутренний угол составит 180-150=30 градусов. Из вершины К проводим высоту к стороне MN. В точке их пересечения ставим букву С. Получили прямоугольный треугольник NКС с углом в вершине N 30 градусов и с гипотенузой NK равной 18 см. Нам необходимо найти высоту, которая является катетом КС прямоугольного треугольника.
sin30=КС/18
КС=18*sin30=18*1/2=9см.
Одного не пойму - зачем давали величину стороны MN=20?