Т.к. треугольники АВМ и ВМС равны ( АВ=ВС, ВМ - общая и вд- биссектриса)
следовательно АМ=МС и треугольники АМД и МДС равны (АМ=МС, ВД является биссектрисой и медианой)
так как вершины лежат на серединах сторон ⇒ стороны второго тр-ка являются средними линиями этого исходного треугольника и равны 1/2 его сторон.
отсюда стороны тр-ка равны 4, 6 и 2,5.
P=4+6+2.5=<u>12.5</u>
Пусть первый катет-х, второй-у, c-гипотенуза
по т. пифагора (квадрат гипотенузы равен сумме квадратов катетов)
с²=у²+х²
система
х-у=14
26²=у²+х²
из первого уравнения выразим х
х=14+у
подставим во второе
26²=у²+(14+у)²
676=у²+14²+2*14*у+у²
676=2у²+196+28у
676-2у²-196-28<span>у=0
</span>480-2у²-28у=0 (делим все на (-2))
у²+14у-240=0- это приведенное уравнение
по т.виета
y₁+y₂=-14
<span>y₁*y₂=-240
</span><span>y₁=-24 (не подходит, <0)
y₂=10 cm
</span>подставим то, что у нас получилось в подстановку
<span>х=14+10
</span>х=24 cm
площадь (произведение катетов деленное на 2)
S=xy/2
S=24*10/2
S=120 cm²
Вот так как-то) Просто из вершины C проводишь к АВ