2^1 = 2
2^2 = 4
z = 6
2^3 = 8
и
0+2 = 2
2+2 = 4
4+2 = 6
8+2 = 8
Знаменатель геометрической прогрессии равен 2.
Догадаться можно следующим образом:
Запишем условия в виде двух систем уравнений:
Система 1:
b2 = b1*x
b3 = b2*x
Здесь х - знаменатель геометрической прогрессии.
Система 2
b1=b2+y
z = b2+y
b3 = z+y = b2+2y
здесь у - разность арифметической прогрессии
Приравниваем b2 и b3 из первой и второй систем:
b1+y = b1*x
b2+2y = b2*x
Делим одно на другое:
(b2+2y)/(b1+y) = b2/b1
b2+2y = b2 + (b2/b1)y
2y = (b2/b1) * y
b2/b1 = 2
Теперь вспоминаем, что b2/b1 = x = 2, а х - это и есть знаменатель геометрической прогрессии.
а)у=2*(-3,5)-15=-22
б)-5=2х-15
2х=10
х=5
в)-5=2*10-15
-5=20-15
-5=5-ложно, значит не проходит
8х²–48ху++3у²–32х²+48ху–32х²=–56х²+3у²=–56*3.24+21=–160.44
У ( у^3-3y+2)
x^3 (5x^6+10x^3-4x)