x² + 4x - 3 = 0
По теореме Виета :
x₁ + x₂ = - 4
x₁ * x₂ = - 3
- 3x₁x₂ + 4(x₁ + x₂) = - 3 * (- 3) + 4 * (- 4) = 9 - 16 = - 7
решение двух квадратных уравнений
Решение на фотографии. Будут вопросы, пишите в ЛС
дискриминант= 16+2100=2116
х1=(4+46)/30= 5/3
х2= (4-46)/30=1,4
Х - собственная скорость катера
у - скорость течения реки
(х + у) - скорость катера по течению реки
(х - у) - скорость катера против течения реки , из условия задачи известно , что (х + у) = 1 1/3 (х - у) ; х + у = 4/3(х - у) ; 3х + 3у = 4(х - у) ;
3х + 3у = 4х - 4у ; 3у + 4у = 4х - 3х ; 7у = х , то есть скорость катера равна 7 скоростям течения реки . Из условия задачи имеем : 96 / (х + у) + 96 / (х - у) = 14
96(х - у) + 96(х + у) = 14(x^2 - y^2)
96x - 96y + 96x + 96y = 14 x^2 - 14y^2
14x^2 - 14y^2 - 192x = 0
7x^2 - 7y^2 - 92x = 0 , Подставим 7у = х , то есть у = 1/7 х
7x^2 - 7(1/7x)^2 - 92x = 0
7x^2 - 1/7 x^2 - 92x = 0
49x^2 - x^2 - 644x = 0
48x^2 - 644x = 0
12x^2 - 161x = 0
(12x - 161) * x = 0
12x = 161
х = 161/12
х = 13 5/12 км /ч - собственная скорость катера
у = 1/7 х
у = 161/12 / 7 = 23/12 = 1 11/12 км/ч - скорость течения реки
Катер прошел 96 км за : 96 / (161/12 + 23/12) = 96 / 184/12 = 144/23 = 6 6/23 часа
Скорость катера против течения равна : 161/12 - 23/12 = 138/12 = 23/2 = 11 1/2 км/ час . Отсюда имеем что скорость плота в : 138/12 / 23/12 = 6 раз меньше скорости катера против течения реки .
За время пока катер проплыл 96 км по течению реки плот проплыл : 23/12 * 144/23 = 12 км
Значит до встречи с катером плот проплывет еще : (96 - 12) / 6 = 84 / 6 = 14 км
Катер встретил плот на расстоянии от пристани А : 12 + 14 = 26 км