<span>Чтобы число делилось на 24 оно должно делится на 3 и на 8.
Число делится на 8, если три его последние цифры образуют число, делящееся на 8.
Искомое число записывается только нулями и единицами, значит, оно заканчивается на 000.Число делится на 3, если его сумма цифр числа делится на 3.
Поскольку три послледние цифры числа нули, первые три должны быть единицами.Таким образом, единственное число, удовлетворяющее условию задачи, это число 111 000.
<span>
<u>Ответ: 111 000.</u></span><span>
</span></span>
A^2+b^2=225
3((a-6)+(b-8))=(a+b)
a^2+b^2=225 a^2+b^2=225
3(a+b-14)=a+b a+b=21
ab=108
a+b=21
a=9
<span>b=12</span>
Трехзначное число не може починатися з цифри 0,
Чтоб числ было четным оно должно заканчиваться четной цифрой, в нашем случае либо 0, либо 2
Пусть число будет заканчиваться 0, остаются первая и вторая цифра, для первой можно выбрать любую из трех цифр 1,2,3, на вторую цифру любую из двух оставшихся, всего таких чисел будет 3*2*1=6
Если же число заканчивается на 2, то первую цифру можно выбрать из цифр 1,3 (0 по умолчанию, 2 уже задействована), на втоуб цифру одну из двух оставшихся, всего таких чисел 2*2*1=4
А всего трехзначных четных из цифр 0,1,2,3 можно составить 6+4=10
Четырехзначное число не может начинаться с 0, чтоб оно было нечетным должно оканчиваться нечетной цифрой т.е. либо 1 либо 3 в нашем случае.
Рассмотрим первый вариант, что число заканчивается 1.
На первое место можно поставить одну из цифр 2 или 3, на второе место одну из двоих оставшихся, ну и на третье однозначно последняя оставшася
всего таких чисел можно составить 2*2*1*1=4
Аналогично если число заканчивается на 3 можно составить точно также 2*2*1*1=4 числа
А всего получается можно составить 4+4=8 четырехзначных нечетных чисел з цифр 0,1,2,3
Это при условии что каждая цифра используется (если используется) только один раз, если допускается возможность повтора цифр, т.е. напр. трицифровое число 111, то
в первом случае 3*4*2=24 числа, во втором 3**4*4*2=96 чисел
1) Подставляя значения x=2 и x=3 в выражение y=x²+p*x+q, получаем систему уравнений:
4+2*p+q=0
9+3*p+q=0
Вычитая из второго уравнения первое, приходим к уравнению 5+p=0, откуда p=-5. Подставляя это значение в первое уравнение, находим q=6.
Ответ: p=-5, q=6.