<span>1
(1+sin2h)/cos2h=tg(pi/4+h)</span><span>
(1+sin2h)/cos2h=(cosh</span>²+sin²h+2sinhcosh)/(cos²h-sin²h)=
=(cosh+sinh)²/(cosh-sinh)(cosh+sinh)=<span>(cosh+sinh)/(cosh-sinh)
tg(</span>π/4+h)=sin(π/4+h)cos(π/4+h)=(sinπ/4cosh+cosπ/4sinh)/(cosπ/4cosh-sinπ/4sinh)=√2/2(cosh+sinh)/√2/2(cosh-sinh)=<span>(cosh+sinh)/(cosh-sinh)
</span>(cosh+sinh)/(cosh-sinh)=<span>(cosh+sinh)/(cosh-sinh)</span>
Первое =10х,второе=-6х,3=18, 4=-16х
4/(x+3)^2-6/(3-x)(3+x)+1/(3-x)=0
(4(3-x)-6(x+3)+(x+3)^2)/(3-x)(x+3)^2=0
12-4x-6x-18+x^2+9+6x=0
x^2-4x+3=0
x1=3 x2=1
x=1
Если график пересекает ось абсцисс, то ордината точки пересечения равна нулю то есть y = 0 .
y = mx + 2m - 5
m * (- 1) + 2m - 5 = 0
- m + 2m - 5 = 0
m = 5